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A Unified Framework for Metric Transfer
Learning
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Abstract—Transfer learning has been proven to be effective for the problems where training data from a source domain and test data
from a target domain are drawn from different distributions. To reduce the distribution divergence between the source domain and the
target domain, many previous studies have been focused on designing and optimizing objective functions with the Euclidean distance
to measure dissimilarity between instances. However, in some real-world applications, the Euclidean distance may be inappropriate to
capture the intrinsic similarity or dissimilarity between instances. To deal with this issue, in this paper, we propose a metric transfer
learning framework (MTLF) to encode metric learning in transfer learning. In MTLF, instance weights are learned and exploited to
bridge the distributions of different domains, while Mahalanobis distance is learned simultaneously to maximize the intra-class
distances and minimize the inter-class distances for the target domain. Unlike previous work where instance weights and Mahalanobis
distance are trained in a pipelined framework that potentially leads to error propagation across different components, MTLF attempts to
learn instance weights and a Mahalanobis distance in a parallel framework to make knowledge transfer across domains more effective.
Furthermore, we develop general solutions to both classification and regression problems on top of MTLF, respectively. We conduct
extensive experiments on several real-world datasets on object recognition, handwriting recognition and WiFi location to verify the
effectiveness of MTLF compared with a number of state-of-the-art methods.

Index Terms—Transfer learning, Metric learning, Density ratio reweighting, Mahalanobis distance, Learning framework.

F

1 INTRODUCTION

A common assumption underlying many machine learn-
ing and data mining algorithms is that training data and test
data are represented in the same feature space and drawn
from the same distribution. However, this assumption may
not hold in many real-world applications, especially when
training data come from one domain (a.k.a. the source
domain) while the test data are from another domain (a.k.a.,
the target domain). To address the problem caused by the
distribution divergence between the source domain and the
target domain, transfer learning has been well studied over
the past few years [1], [2].

In practice, transfer learning is desirable to many real-
world applications. For example, for sentiment analysis on
online product reviews, a main task is to build a classifier to
predict the overall sentiment polarity, e.g., positive, neural,
or negative, of a given online product review. However,
sentiment dictionaries used on different types of products
can be very different, resulting in that a sentiment classifier
trained on one type of products, i.e., the source domain,
may fail to preform well on another type of products, i.e.,
the target domain [3], [4]. In this case, it would be helpful if
classification knowledge can be transferred from the source
domain to the target domain. As a second motivating appli-
cation, for indoor WiFi localization [5], [6], a main task is to
predict a mobile user’s location based on the received WiFi
signals on the mobile device. However, the received WiFi
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signal strength can vary significantly across different mobile
devices even though being received at the same location and
at the same time. As a result, a localization model trained
on one type of mobile devices may fail to make precise
localization on another type of mobile devices. To address
this problem, transferring knowledge across different types
of mobile devices is a promising solution [7]. As a third
example, we consider the problem of object recognition [8],
[9]. A main task is to automatically recognize an object
from a target scene based on a set of annotated objects
from other scenes, a.k.a., source scenes. For this problem,
the varying factors (e.g., location and pose, view angle,
resolution, motion blur, scene illumination and background
clutter between scenes) possibly lead to difference in data
distributions between the target scene and the source scenes.
From this perspective, how to adapt the recognition models
learned from the source scenes to recognize objects from
the target scene accurately through knowledge transfer is
critical.

Previous studies about transfer learning focused on ei-
ther re-weighting the instances in the source domain [10],
[11], [12], [13] to match the distribution of the target domain,
or finding a new representation for the instances in the
source domain and the target domain [4], [14], [15], [16],
[17] in order to reduce the distribution divergence between
the source domain and the target domain. As far as we
know, most existing transfer learning methods utilize the
Euclidean distance to measure the dissimilarity between
instances in the source domain or the target domain. This
may make knowledge transfer suffer from the limitations
associated with the Euclidean metric. Specifically, from the
perspective of classification, the objective functions that are
described using the Euclidean distance may be subopti-
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mal: commonly they would not maximize the inter-class
distances while minimizing intra-class distances [18], [19],
[20], [21]. An analogous problem also exists in regression
problems because the Euclidean distance may not be able
to capitalize on any statistical regularities in the data that
might be estimated from a large training set of labeled
data [19]. In addition, if most of the original input features
are irrelevant to the target regression or classification task,
then using a pre-defined and data-independent distance is
not able to learn a precise model. As a result, how to reduce
distribution divergence between domains and learn an ap-
propriate distance for the target domain simultaneously is
crucial for transfer learning.

To address these issues, we propose a metric transfer
learning framework (MTLF) to encode metric learning into
transfer learning. On one hand, MTLF employs instance
weights to bridge the difference in distributions between the
source domain and the target domain. On the other hand, a
Mahalanobis distance is utilized in MTLF to maximize the
distance between classes and minimize the distance within
each class. Our main contributions are two folds.

1) Different from many instance-based transfer learn-
ing approaches that only focus on learning instance
weighs for the source domain data with the Eu-
clidean distance, MTLF takes advantage of a learned
Mahalanobis distance (i.e., unit less, scale-invariant
and taking into account the correlations of the
datasets), and thus can more effectively preserve
and utilize the intrinsic geometric information a-
mong the instances of different domains with simi-
lar or dissimilar labels. In this way, MTLF improves
the accuracy of the target domain tasks using the
reweighted instances in the source domain.

2) Different from some metric-based transfer learning
approaches that learn the instance weights for the
source domain data and a Mahalanobis distance
metric for the target domain data in a pipelined
framework, in MTLF, an alternating optimization
method is proposed to learn the instance weights
and a Mahalanobis distance metric simultaneously.
In this way, the knowledge, i.e., the weights for
source domain data, which is used as a bridge across
domains, can be learned more precisely under a
more appropriate distance metric.

The rest of this paper is organized as follows. In the
following section, we briefly review some work related to
our study. In Section 3, we present the proposed framework,
MTLF, and two general solutions to regression and classifi-
cation problems on top of MTLF in detail, respectively. In
Section 4, we propose an alternating optimization method
to solve MTLF in particular. We report the experimental
results on several benchmark datasets in Section 5. Finally,
we conclude this paper and discuss future work in Section 6.

2 RELATED WORK

Recently, various transfer learning techniques have been
proposed for transferring knowledge in terms of instances,
features, parameters or relational information among data
objects across domains [1], [2]. Among existing transfer

learning methods, approaches related to our study can
be summarized into three categories: instance-based transfer
learning, feature-based transfer learning with distribution match-
ing and metric-based transfer learning.

As there are a number of transfer learning approaches
in the first category [13], here, we just briefly review some
representatives. TrAdaBoost [11] adjusts the weights of the
labeled data in the source domain to filter out the instances,
which are most unlikely drown from the target domain
distribution. By doing so, the re-weighted source-domain
instances compose a distribution similar to the one found
at the target domain. Finally, the re-weighted instances
are treated as additional training data to learn a model
for the target domain. Since the traditional TrAdaBoost
is only applicable to classification problems, Pardoe and
Stone [22] extended TrAdaBoost and proposed ExpBoost.R2
and TrAdaBoost.R2 to deal with regression problems. Wan et
al. [23] proposed the Bi-weighting domain adaptation (BIW)
algorithm for cross-language text classification. BIW first
aligns the feature spaces of the source domain and the target
domain into the same coordinate system, and then adjusts
the instance and feature weights of the training data in the
source domain.

In the second category, the goal is to match the dis-
tributions between the source domain and the target do-
main based on subspace learning or feature learning. For
instance, Pan et al. [16], [24] proposed learn a latent space
for the source domain and the target domain, where the
distance in distributions between domains can be mini-
mized while some important properties of the data can be
preserved. Their proposed methods utilize the techniques
on kernel embedding of distributions to learn the latent
space, and solve the proposed optimization problem using
either semidefinite programming or generalized eigen de-
composition. A follow-up work proposed by Si et al. [15]
adopts a different criterion to measure distance between
distributions and solve the resultant optimization problem
using gradient-descent-based approaches. Shao et al. [25] at-
tempted to impose a low-rank constraint to match the source
domain and the target domain in the subspace for transfer
learning. Baktashmotlagh et al. [26] proposed a subspace-
based method and a sample selection method for unsuper-
vised domain adaptation by exploiting the probability dis-
tributions that lie on a Riemannian manifold. Ding et al. [27]
developed a Deep Low-Rank Coding (DLRC) by integrating
feature learning and knowledge transfer in a unified deep
learning framework. By exploiting a discriminative low-
rank coding, DLRC attempts to mitigate the marginal and
conditional distributions between source domain and the
target domain. Long et al. [28] proposed to reduce the dif-
ference between domains in both the marginal distribution
and the conditional distribution through a dimensionality
reduction procedure. Though a common subspace or a new
feature representation can be obtained by these methods, the
potential impact of Mahalanobis distance in preserving the
intrinsic geometric information of the instances in different
domains is ignored.

In the third category, Zhang and Yeung [29] proposed
the transfer metric learning (TML) algorithm to learn a
metric for the target task by exploiting the correlations
between the target task and a set of source tasks. Kulis et
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Fig. 1. An example to demonstrate different impacts on classification with the Euclidean distance and a Mahalanobis distance respectively. (a)
shows the original data generated according to three Gaussian distributions with different means. (b) shows the data obtained by transforming the
three Gaussian distributions data with a learned Mahalanobis distance. (c) indicates the transformed data with unified scale as in (a).

al. [30] proposed a kernel-based method, ARC-t, to learn a
transformation between domains based on metric learning.
Fouad et al. [31] proposed an approach to learning with
the so-called privileged information through metric learning
in prototype-based models. However, these metric-based
learning methods do not explicitly reduce difference, e.g.,
the divergence in distributions, between domains in the
learning process. Recently, a metric learning method based
on deep learning was proposed [32], namely Deep Transfer
Metric Learning (DTML). In DTML, though a Maximum
Mean Discrepancy (MMD) [33] based regularization term is
introduced to reduce the distance in distributions between
domains, a deep neural network is used to approximate the
feature map used in MMD instead of a characteristic ker-
nel [31]. In this way, minimization on the distance estimated
by MMD may not be able to significantly reduce the inter-
domain distance in theory.

In theory, to represent an arbitrary distribution using
kernel embedding, a kernel needs to be characteristic or u-
niversal [33]. MMD is a non-parametric measure to estimate
distance between distributions using kernel embedding. If
the kernel is not characteristic, there is no guarantee that the
estimated distance between distributions is precise though
empirically, non-characteristic kernels might be used to ob-
tain good performance for transfer learning [16]. In DTML,
the neural network excluding its top layer can be considered
as an implicit nonlinear feature map φ to map raw data to
a “high-level” feature space, and in the top layer, a linear
kernel k(φ(xi), φ(xj)) = 〈φ(xi), φ(xj)〉 w.r.t. φ(x) is used
for MMD. If there is a proof that the kernel k(φ(xi), φ(xj))
is a characteristic kernel w.r.t x, then the MMD theory can be
ensured, and thus the distance between the source domain
distribution and the target domain distribution can be esti-
mated precisely, otherwise, minimization on the estimated
distance might not be able to significantly reduce the inter-
domain distance in the theory.

The most related work to our study is the consistent dis-
tance metric learning method (CDML) proposed by Cao et
al. [34]. By investigating two weight strategies (i.e., instance
weights and instance-pair weights), CDML attempts to
solve the metric learning problem under covariate shift [35].
Note that, although the basic ideas behind CDML and our
proposed MTLF are similar, i.e., to learn a distance metric for
the target domain by reducing the distribution divergence

between the source domain and the target domain, MTLF
differs from CDML in two aspects: 1) MTLF is a gener-
al framework to solve both classification and regression
problems, while CDML is only applicable to classification
problems, 2) In CDML, instance weights and a Mahalanobis
distance metric are learned in a pipelined framework where
the instance weights are first learned under the Euclidean
metric, and a Mahlanobis distance metric is then trained
with the learned instance weights. In contrast, in MTLF,
we propose an alternating optimization approach to learn
the instance weights and a distance metric simultaneously.
By doing so, MTLF can match distributions between the
source domain and the target domain more effectively (or
precisely) and hence learn a more suitable Mahalanobis
distance for the target domain task.

3 METRIC TRANSFER LEARNING FRAMEWORK

3.1 Problem Statement
Denoted by DS ={(xj , yj)|j=1, ..., NS} the source-domain
labeled data, where xj ∈ Rd×1 is an input feature vec-
tor, and yj ∈ R is the corresponding output, and DT =
Dl
T

⋃
Du
T = {(xj , yj)|j = NS + 1, ..., NS +N l

T }
⋃
{xj |j =

NS+N l
T +1, ..., NS+NT } the partially labeled data in the

target domain, where N l
T � NS . In our transfer learning

setting, the marginal distributions of the source and target
domain data are different, i.e., PT (x) 6= PS(x). As a result,
a distance metric learned with DS may not be desired for
DT , while the labeled data in DT is too few to learn a
precise distance metric. Therefore, our goal is to learn a
Mahalanobis distance metric for the target domain with DT

by adaptively exploiting the labeled data from DS .

3.2 The Overall Framework
Learning a Mahalanobis distance metric has been shown
to be useful for many classification and regression problem-
s [36], [37]. Fig. 1 shows an example to demonstrate different
impacts on classification with the Euclidean distance metric
and a Mahalanobis distance metric respectively. Fig. 1(a)
shows the original data generated according to three Gaus-
sian distributions with different means. From this figure, we
can observe that it is not easy to distinguish the data objects
drawn from different distributions under the Euclidean dis-
tance. Fig. 1(b) shows the data obtained by transforming the
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three Gaussian distributions data with a Mahalanobis dis-
tance (i.e., the Mahalanobis distance learned by information-
theoretic metric learning [38]). In Fig. 1(b), it is easy to
distinguish the data objects drawn from different distri-
butions under the Mahalanobis distance. Fig. 1(c) shows
the transformed data with unified scale as in Fig. 1(a).
We can observe that different distributions can easily be
distinguished under the learned Mahalanobis distance, even
with unified scale.

In this paper, we focus on learning a Mahalanobis dis-
tance metric for the target domain. Let M ∈ Rd×d be a
positive semi-definite matrix, a Mahalanobis distance metric
between a pair of instances xi and xj is defined as follows,

dij =
√

(xi − xj)>M(xi − xj). (1)

AsM is positive semi-definite, it can be decomposed asM=
A>A, where A ∈ Rd×d. Therefore, learning a Mahalanobis
distance in terms of M is equivalent to learn a matrix A.

Because the distributions of the source domain and the
target domain are different, PS(x) 6= PT (x), the source-
domain labeled data cannot be used directly to learn a dis-
tance metric for the target domain. Similar to most instance-
based transfer learning approaches, here we assume that
some labeled data in the source domain after reweight-
ing are still able to provide discriminative information for
the target domain, and thus useful for learning a metric
for the target domain. Therefore, in this work, we offer
a unified framework to learn instance weights ω for the
source domain data, a Mahalanobis distance metricA for the
target domain, and a final predictive model f for the target
domain, simultaneously. The proposed unified framework
is written as follows,

min
A,ω,f

J = r(A) + λψ(ω) + β`(f,A, ω;DS , D
l
T ), (2)

where λ > 0 and β > 0 are tradeoff parameters to balance
impact of different terms in the objective. The regularization
term r(A) controls the generalization error of the metric in
terms of A. Here, we define r(A) as the following form,

r(A) = tr(A>A). (3)

The second term in the objective (2), i.e., ψ(ω), is the regular-
ization term on the instance weights for the source-domain
labeled data. To estimate the instance weights, all the source
and target domain data including labeled and unlabeled are
used. The introduction of this regularization term is to avoid
some potential issues in learning the instance weights ω and
the Mahalanobis distance metric A, which will be discussed
in Section 3.3. The third term in the objective (2) is the loss
function of the predictive model f with the learned metricA
on the target-domain labeled data as well as the re-weighted
source-domain labeled data. Specific formulations of the
loss function for classification and regression problems will
be defined in the Section 3.4 and Section 3.5, respectively.

3.3 A Specific Form of ψ(ω)

In this paper, we define the form of the regularization term
ψ(ω) as follows,

ψ(ω) = ‖ω − ω0‖2, (4)

where ω0(xi) = PT (xi)
PS(xi)

is the estimated density ratio or
weight of an instance xi in the source domain under the
Euclidean metric. The higher is the value of ω0(xi), the
higher is the value of PT (xi) and/or the smaller is the
value of PS(xi). This implies that xi is more similar to
the target domain distribution than the the source domain
distribution, and thus is of more importance to the target
domain, under the Euclidean metric.

To estimate the density ratio PT (x)
PS(x) , we adopt the ap-

proach proposed by [39], where the density ratio is consid-
ered as a function that can be approximated by a linear com-

bination of some basic functions, i.e., ω0(xi)=
b∑
j=1

αjφj(xi),

where {φj}’s indicate a set of pre-defined basis functions
and {αj}’s represent the corresponding nonnegative pa-
rameters to be learned. Different setting of φj may affect
the performance of the density ratio estimation. Herein, we
follow [39] to define the basic function φj using a Gaussian
kernel function centered at cj ,

φj(x) = exp

{
−‖x− cj‖

2

σ2

}
, (5)

where cj can be chosen from a subset of instances in the
target domain. The weights of the source domain instances,
ω0(x), can be obtained by minimizing the KL-divergence
between PT (x) and ω0(x)PS(x) as follows,

min
ω0

KL (PT (x)‖ω0(x)PS(x))

=

∫
PT (x) log

PT (x)

ω0(x)PS(x)
dx

=

∫
PT (x) log

PT (x)

PS(x)
dx−

∫
PT (x) logω0(x) dx. (6)

As shown in [39], (6) can be converted to the following
optimization problem,

max
α

∑
xj∈DT

log
b∑
i=1

αiφi(xj) (7)

s.t.
∑

xj∈DS

b∑
i=1

αiφi(xj) = NS , and α > 0.

Since (7) is convex, gradient ascent approaches can be ap-
plied to obtain the optimal solution.

Note that in (7), we utilize the source-domain labeled
data and all target domain data including both labeled and
unlabeled to learn the parameters, {αj}’s. Then the prior
of the weight of each source-domain labeled data can be

calculated by ω0(xi) =
b∑
j=1

αjφj(xi), which is further used

to learn a more precise weight ω(xi) with the regularization
term (4). In this way, distribution divergence between the
reweighted source domain data and the target domain data
can be minimized.

For simplicity in presentation, in the rest of this paper,
we denote by ω̂0 ∈R(NS+N l

T )×1 the instance weight vector
with ω̂0(xi) = ω0(xi) for xi ∈ DS and ω̂0(xi) = 1 for
xi ∈ Dl

T . Accordingly, we denote by ω̂ ∈ R(NS+N l
T )×1 the

instance weight vector with ω̂(xi) = ω(xi) for i= 1, ..., NS
to be learned, while ω̂(xi)=1 for i>NS .
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3.3.1 Discussion on the Regularization Term
In some previous metric-based transfer learning method-
s, e.g., CDML [34], instance weights and a Mahalanobis
distance metric are learned in a pipelined framework. To
reduce the difference between DS and DT , the vector of
instance weights ω0 is first obtained under the Euclidean
distance by minimizing the KL-divergence as discussed in
(6). Then in the second step, a Mahalanobis distance metric
in terms of A is learned for DT by transferring supervised
information from DS through the learned weight vector ω0.

A major drawback in such a pipelined framework is
that the vector of instance weights ω0 is learned under the
Euclidean distance without taking an appropriate distance
metric into consideration. In this case, the bridge between
domains constructed through ω0 may not be precise. As a
result, the error introduced in learning ω0 can propagate
to the learning on A. This limits the power of knowledge
transferred across domains.

Suppose that A′ and A are the ideal distance metric for
the source domain and the target domain respectively, then
the ideal instance weights ω to be learned should be

ω(x) = PAT (x)/PA
′

S (x), (8)

where PA
′

S (x) and PAT (x) are density estimations of DS

and DT under the distance metric A′ and A, respectively,
which is different from ω0(x) = PT (x)

PS(x) . However, optimiz-
ing A and ω by directly minimizing the KL-divergence,
KL(PAT (x)||ω(x)PA

′

S (x)), is intractable1. Therefore, in this
paper, we propose to use ω0 as a prior for learning ω rather
than enforcing ω = ω0 as proposed in CDML.

3.4 MTLF for Regression Problems
When addressing regression problems, we first define the
following form for the predictive model f ,

f(xi) =
1

Z

NS+N l
T∑

j 6=i

kAijyj , (9)

where Z is a normalization term,

Z =

NS+N l
T∑

j 6=i

kAij ,

and kA is referred to as the kernel function under the
distance metric A to calculate similarity between instances.
In this paper, we use a Gaussian kernel for kA, i.e., kAij =

1√
2πσ

exp (−d
2
ij

σ2 ), where dij is the Mahalanobis distance in
terms ofA between instances i and j, and σ is the parameter
of the Gaussian kernel.

Note that (9) is adapted from kernel regression [36]
by calculating the kernel matrix using a Mahalanobis
distance metric. We further define the loss function
`(f,A, ω̂;DS , D

l
T ) as the sum of weighted squared errors

as follows,

`(f,A, ω̂,DS , DT ) =

NS+N l
T∑

i=1

ω̂(xi)‖f(xi)− yi‖2. (10)

1. Note that A′ can be learned in advance for the source domain data.

By substituting (3), (9) and (10) into the unified framework
(2), we can obtain the specific optimization problem for
regression as follows,

min
A,ω̂

tr(A>A) + λ‖ω̂ − ω̂0‖2 (11)

+β

NS+N l
T∑

i=1

ω̂(xi)

∥∥∥∥∥∥ 1

Z

NS+N l
T∑

j 6=i

kAijyj − yi

∥∥∥∥∥∥
2

s.t.

NS∑
i=1

ω̂(xi) = NS , and ω̂(xi) ≥ 0,

where the constraints are used to normalize ω̂.

3.5 MTLF for Classification Problems

When tackling classification problems, we adapt the ap-
proach proposed by [36] to use K-nearest-neighbor with the
instance weights ω̂ and under the distance metric A as a
classifier by defining the loss function as follows,

`(f,A, ω̂,DS , DT ) = `in(A, ω̂)− `out(A, ω̂), (12)

where
`in(A, ω̂) =

∑
yi=yj

ω̂(xi)ω̂(xj)‖A(xi − xj)‖2

`out(A, ω̂) =
∑
yi 6=yj ω̂(xi)ω̂(xj)‖A(xi − xj)‖2,

where `in(A, ω̂) is the sum of the weighted difference within
class and `out(A, ω̂) is the sum of the weighted difference
between classes, under the distance metric A, respectively.
By substituting (12) and (3) into (2), we obtain the specific
optimization problem for classification as follows,

min
A,ω̂

tr(A>A) + λ‖ω̂ − ω̂0‖2 (13)

+β
∑
i,j

ω̂(xi)ω̂(xj)‖A(xi − xj)‖2δij

s.t.

NS∑
i=1

ω̂(xi) = NS , and ω̂(xi) ≥ 0,

where δij is an indicator function, where

δij =

{
1, yi = yj ,

−1, yi 6= yj .

Note that in (13) we use all the in-class and out-of-class
instance-pairs to estimate the loss function value. However,
a larger number of such instance-pairs, denoted by C, may
increase the computational cost. The computational com-
plexity of our algorithm is O(Cd2). To balance the accuracy
and the time cost, in practice, cross-validation can be used
to choose a tradeoff value for C.

4 OPTIMIZATION

In this section, we derive approaches to solve the opti-
mization problems constructed in (11) and (13), respectively.
For the sake of simplicity, we first derive an overall opti-
mization approach for the following unified optimization
problem, which is constructed by using `(f,A, ω̂,DS , DT )
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as a general loss function for (11) and (13), and converting
the optimization problem to an unconstrained one,

min
A,ω̂
J = r(A) + λ‖ω̂ − ω̂0‖2 + β`(f,A, ω̂,DS , DT ) (14)

+ρ

(
(ω̂T e−NS)2 +

NS∑
i=1

(max (0,−ω̂(xi)))
2

)
,

where ρ is a nonnegative penalty coefficient and e ∈
R(NS+N l

T )×1, where ei = 1 if i ≤ NS , and ei = 0 if
NS < i ≤ NS +N l

T .
As both the classification and regression models are

constructed in a non-parametric form, we do not need to
optimize (14) with respect to f explicitly. Therefore, we
propose an alternating optimization algorithm to learn A
and ω̂ alternatingly and iteratively. To be specific, at the t-th
iteration, we first fix the matrix At and update the value of
ω̂t using gradient descent based on the following rule,

ω̂t+1 = ω̂t − γ1
∂J
∂ω̂

∣∣∣∣
ω̂t

, (15)

where γ1 > 0 is an adaptive step-size. The derivative of the
objective J w.r.t. ω̂ in (15) can be written as

∂J
∂ω̂

= 2λ(ω̂ − ω̂0) + βζ + ρ[2(ω̂T e−NS)e+ ω̂2ξ],

where ξ is the vector with ξi = sign(max(0,−ω̂(xi))), and
ζ is the vector with

ζi =


∥∥∥ 1
Z

∑NS+N l
T

j 6=i kAijyj − yi
∥∥∥2 , for regression,

∑
i,j

ω̂(xj)‖A(xi − xj)‖2δij , for classification.

After updating the value of ω̂t+1, we then alternatingly
fix ω̂t+1 and update At based on the following rule,

At+1 = At − γ2
∂J
∂A

∣∣∣∣
At

, (16)

where γ2 > 0 is an adaptive step-size. For regression
problems, the derivative of the objective J w.r.t. A can be
written as

∂J
∂A

= 2A+ 2β
N∑
i=1

ω̂(xi)(ŷi − yi)
∂ŷi
∂A

= 2A+

2β
N∑
i=1

ω̂(xi)(ŷi − yi)
Z

 N∑
j 6=i

yj
∂kAij
∂A
− ŷi

N∑
j 6=i

∂kAij
∂A


= 2A+ 2β

N∑
i=1

ω̂(xi)(ŷi − yi)
Z

N∑
j 6=i

(ŷi − yj)
∂kAij
∂A

= 2A+ 4βA

N∑
i=1

ω̂(xi)(ŷi − yi)
Z

N∑
j 6=i

(yj − ŷi)kAijvijvTij ,

Algorithm 1 The MTLF algorithm
Require: Source-domain labeled data DS , target-domain

labeled data Dl
T , target-domain unlabeled data Du

T ,
initializations A0 and ω̂0, step sizes γ1 and γ2, tradeoff
parameters λ and β, penalty conefficient σ, threshold ε,
and maximum number of iterations T .

1: procedure MTLF(A, ω̂)
2: for t := 0 to T do
3: Compute the gradient ∂J (A,ω̂t)

∂A , and ∂J (At,ω̂)
∂ω̂ .

4: Update ω̂ by ω̂t+1 = ω̂t − γ1 ∂J (At,ω̂)
∂ω̂

∣∣∣
ω̂t
.

5: Update A by At+1 = At − γ2 ∂J (A,ω̂t+1)
∂A

∣∣∣
At

.

6: if
∣∣J (At+1, ω̂

t+1)− J (At, ω̂
t)
∣∣ < ε then

7: A = At+1, ω̂ = ω̂t+1, break.
8: end if
9: end for

10: end procedure
Ensure: (A, ω̂) = arg minJ (A, ω̂)

where N = NS + N l
T , ŷi = f(xi), and vij = xi − xj .

For classification problems, the derivative of the objective
J w.r.t. A can be written as,

∂J
∂A

= 2β
∑
i,j

ω̂(xi)ω̂(xj)Avijv
T
ijδij + 2A.

We alteratingly and iteratively update ω̂ and A until the
change in values of the objective function J is less than
a predefined threshold ε. The algorithm is summarized in
Algorithm 1. Note that the initialization of matrix A0 can
be learned in advance from the source domain, and the
instance weight vector ω̂0 can be initialized based on the
Euclidean distance.

4.1 Computational Complexity
In this section, we analyze the computational complexity of
our proposed MTLF. We denote by T the number of iter-
ations. The computational cost for computing the gradient
of J with respect A is O(T (NS + N l

T )Cd2), where C is
the number of instance-pairs, and d is the dimensionality
of each instance. The computational cost for computing the
gradient of J with respect ω̂ is O(TCd2). Moreover, the
computational cost caused by other operations, i.e., Lines 4-
7 in Algorithm 1 is O(TCd2). Therefore, the overall compu-
tational complexity of Algorithm 1 is O(T (NS +N l

T )Cd2).

5 EXPERIMENTS

To verify the effectiveness of the proposed MTLF 2, we
conduct extensive experiments on both regression and clas-
sification problems on serval benchmark datasets, including
indoor localization on the WiFi Dataset [5] 3, object recog-
nition on the Office-Caltech Dataset [30] 4, and handwriting
recognition on the USPS 5-MNIST 6 Dataset. The details of
these datasets are described in the following section.

2. Source codes are available at https://github.com/xyh2016/MTLF
3. http://www.cse.ust.hk/∼qyang/ICDMDMC07/
4. http://www.eecs.berkeley.edu/∼jhoffman/domainadapt/
5. http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
6. http://yann.lecun.com/exdb/mnist/
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TABLE 1
Statistics of the three datasets.

Datasets Tasks Dimensions Categories Labeled instances in
SD (DS )

Labeled instances in
the TD (Dl

T )
Test instances in TD

(Du
T )

WiFi Dataset WiFi 101 - 621 53 3,075

Office-Caltech Dataset

a-c 800 10 200 30 1,093
w-a 800 10 80 30 928
w-d 800 10 80 30 127
w-c 800 10 80 30 1,093
d-w 800 10 80 30 265
d-c 800 10 80 30 1,093
c-a 800 10 80 30 928
c-w 800 10 80 30 265
c-d 800 10 80 30 127

USPS-MNIST Dataset usps-mnist 256 10 9,298 1,000 10,000
mnist-usps 256 10 10,000 1,000 8,298

5.1 Datasets
Table 1 shows some statistics of the three datasets, i.e.,
the WiFi dataset, the Office-Caltech dataset and the USPS-
MNIST dataset, used in our experiments.

5.1.1 WiFi Dataset
The WiFi dataset is commonly used to evaluate the per-
formance of transfer learning methods for regression [16],
which is about an indoor WiFi localization problem over
time. All the training and test data are collected around a
floor in a building. It consists of 621 training instances in
the source domain (i.e., DS) and 3,128 labeled instances
(including 53 instances for training (i.e., Dl

T ) and 3,075
instances for testing (i.e., Du

T ) in the target domain, where
each instance is represented by 101 features.

5.1.2 Office-Caltech Dataset
The Office-Caltech dataset is the benchmark dataset for
cross-domain object recognition which contains 10 over-
lapping categories from 4 domains: Amazon (a), Webcam
(w), Dslr (d) and Caltech256 (c). Images in the domains,
Amazon and Caltech256, are from amazon.com and office
environment, respectively. The domains, Webcam and Dslr,
contain images taken by a webcam and a dslr camera,
respectively. The images in different domains are taken with
varying factors (i.e., location and pose, view angle, resolu-
tion, motion blur, scene illumination and background clutter
between scenes) which leads to difference in distributions
between the four domains. From this dataset, we construct
9 cross-domain recognition tasks for experiments, each of
which is denoted by SD-TD, where SD denotes the source
domain and TD denotes the target domain. For example,
the task a-c denotes that Amazon is used as the source
domain and Caltech256 is used as the target domain. For
the tasks with Amazon as the source domain, 20 instances
per category in Amazon are randomly selected as DS , and
3 labeled instances per category in the target domain are
randomly selected as Dl

T . For all the other tasks, 8 instances
per category in the source domain are randomly selected
as DS and 3 labeled instances per category in the target
domain are randomly selected as Dl

T .

5.1.3 USPS-MNIST Dataset
The USPS dataset and the MNIST dataset are widely used in
computer vision and pattern recognition. The USPS dataset
consists of 9,298 labeled images, each of which is of the
size of 16×16. The MNIST dataset consists of 60,000 training

images and 10,000 test images, each of which is of the size of
28×28. Note that, The USPS and MNIST datasets are subject
to different distributions and both contain 10 categories. We
construct two handwriting recognition tasks usps-mnist and
mnist-usps based on these two datasets. For example, the
task usps-mnist denotes that USPS is used as the source
domain and MNIST is used as the target domain. For the
task usps-mnist, 9,298 labeled instances in the source domain
are selected as DS , 1,000 labeled instances in the target
domain are randomly selected asDl

T , and 10,000 test images
in the target domain are used for test, i.e., Du

T . For the task
mnist-usps, 10,000 labeled instances in the source domain are
selected as DS , 1,000 labeled instances in the target domain
are randomly selected as Dl

T , and 8,298 test images in the
target domain are used for test, i.e., Du

T . By considering the
fact that MTLF is designed for the case where the source
domain and the target domain have the same feature space,
we rescale all images to the size of 16×16.

5.2 Comparison Baselines
We compare our proposed MTLF with a number of state-of-
the-art methods. On the WiFi dataset, the baseline methods
for comparison include a support vector regression ma-
chine (SVR) and MLKR [36], which is a regression model
with a data-dependent distance metric, AdaBoost.R2 and
TrAdaBoost.R2 [22] which are transfer learning methods
for regression. On the Office-Caltech dataset, the baseline
methods for comparison include support vector machines,
SVMs with source-domain labeled only and SVMt with
target-domain labeled data only, transfer learning methods
based on metric learning, ARC-t and CDML, and feature-
based transfer learning methods, HFA [40], MMDT [41],
GFK [42], JDA [28] and SISS [26]. On the USPS and MNIST
datasets, the baseline methods for comparison include sup-
port vector machines (SVM with both source-domain and
target-domain labeled data, SVMs, and SVMt), CDML and
MMDT. Note that all these baseline models except for SVMs
and SVMt are trained on the labeled data in both the source
and target domains, while they are tested on the unlabeled
data in target domains.

Regarding our proposed MTLF, to further investigate the
impact of the instance weights and the learned Mahalanobis
distance to the overall performance, we denote by MTLF1 a
reduction of MTLF only using instance weights and fixing
A to be an identity matrix, by MTLF2 a reduction of MTLF
only using the learned Mahalanobis distance and fixing all
the instance weights to be one, and by MTLF3 the proposed
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Fig. 2. Experimental results on the WiFi dataset.

MTLF using both the instance weights and the learned
Mahalanobis distance.

To make fair comparisons, all algorithms adopt the same
experimental setup. In particular, all the algorithms were
implemented with MATLAB R2013a and run on a machine
with Windows OS. All the experiments were conducted over
20 random permutations for each dataset, and the results are
reported by averaging over the 20 runs.

5.3 Regression on WiFi Dataset
In this experiment, we first analyze the impact of differ-
ent components of MTLF, and then compare MTLF with
other state-of-the-art methods. In the first experiment, we
compare the effectiveness of the learned instance weights
and Mahalanobis distance for MTLF. Experimental results
are shown in Fig. 2. From the figure, we can find that in
the application of indoor WiFi-based localization, learning
an appropriate Mahalanobis metric contributes more sig-
nificantly to the overall prediction results in terms of root
mean squared error (RMSE) than learning instance weight-
s for the source-domain labeled data. Moreover, learning
instance weights with an appropriate metric can further
improve prediction results. We also note that more target-
domain labeled data used in training can lead to smaller
RMSE. Compared to MTLF2 and MTLF3, the performance
of MTLF1 in terms of RMSE is much more sensitive to the
size of the target-domain labeled data.

In Fig. 2, we further compare the prediction results of
MTLF3 with those of other baseline methods including M-
LKR, SVR, AdaBoost.R2 and TrAdaBoot.R2. From the figure,
we find that MLKR and MTLF3 perform much better than
SVR, AdaBoost.R2 and TrAdaBoost.R2 in terms of RMSE.
This is mainly because that both MLKR and MTLF3 learn
a Mahalanobis distance metric for the WiFi data instead of
using the Euclidean distance. As we analyzed in the first
experiment, an appropriate Mahalanobis distance metric is
more effective to model WiFi data. With an inappropriate
metric, the transferred labeled data from the source do-
main may even hurt the performance of the target model
as shown by TrAdaBoost.R2’s performance under varying
size of target-domain labeled data. The reason why MTLF3

outperforms MLKR is that with the learned metric, MTLF3

further learn instance weights to reduce the difference in
distributions between domains. Note that the results on the
WiFi dataset shown in Figure 2 are different from those

reported in [16]. This is because as shown in [16], a de-
noising step is important for WiFi data. However, in this
paper we focus on evaluating the effectiveness of a metric
learned by MTLF3, thus we do not perform any de-noising
process on the WiFi data.

To further demonstrate the effectiveness of MTLF, in
Fig. 3 we visualize the location map covered by MTLF and
MLKR from the test data in the target domain, respectively.
As can be seen from the figure, the map recovered by
MTLF is much closer to the ground-truth map than that
covered by MLKR. As we discussed, this is mainly because
MLKR does not take the difference between domains into
consideration when learning the distance metric. Note that
the map recovered by MTLF in 3(c) is not very smooth.
This is because as shown in [43], the intrinsic structure
behind WiFi data may be a manifold, while MTLF does not
exploit the manifold structure to learn the distance metric
and instance-weights. In our future work, we will study
how to encode a manifold structure of data into MTLF.

5.4 Classification on Office-Caltech Dataset

In our experiments, we learn a Mahalanobis distance metric
via MTLF, and use a KNN Classifier for classification, where
the distance between two instances is defined as (1). For a
test image xi, we first compute the learned Mahalanobis
distance between xi and each source-domain and target-
domain labeled instance. Then we chose the K nearest
instances to xi as the references. The class labels of xi is
determined by a majority vote of the K nearest reference
instances.

Experimental results on the Office-Caltech dataset are
presented in Table 2. To make a fair comparison, we use
σ/
√
ntrail instead of σ in Table 2, where σ is the standard

deviation, and ntrail = 20 is the number of random per-
mutations. From Table 2, we can observe that similar to the
results shown in Figure 2, the performance of MTLF2 and
MTLF3 in terms of classification accuracy is much better
than MTLF1. Furthermore, MTLF3 consistently outperforms
MTLF2. This is because in MTLF1, the matrix A is replaced
by an identity matrix, which results in that the predictions
made by MTLF1 is equivalent to those made by a K-
nearest-neighbor classifier under the Euclidean distance. In
this case, instance weights are ineffective. While in MTLF2,
the weights of all instances including both the source- and
target- domain instances are equal, which fails to reduce
the difference between domains. From the results, we can
conclude that to transfer supervised information across do-
mains for object recognition effectively, learning weights for
source-domain labeled data and an appropriate metric for
the target domain data need to be done simultaneously.

From Table 2, we can also find that compared to non-
transfer classifiers i.e., SVMs and SVMt, transfer learning
methods i.e., GFK, ARC-t, MMDT, CDML and MTLF3, can
obtain much better performance in terms of recognition
accuracy. Among all the transfer learning methods, MTLF3

performs best on the 9 tasks on average. This is because
MMDT, HFA and ARC-t do not take the potential impor-
tance of reducing the divergence in distributions between
the source domain and the target domain into consideration,
and thus do not minimize the divergence in distributions
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Fig. 3. Recovered location maps from the WiFi dataset.
TABLE 2

Experimental results on the Office-Caltech dataset (Accurancy±Standard deviation/
√
ntrail in %).

Groups GFK HFA SVMt SVMs ARC-t MMDT CDML JDA SISS MTLF1 MTLF2 MTLF3

a-c 36.0±0.5 31.1±0.6 32.0±0.8 35.1±0.3 37.0±0.4 36.4±0.8 38.1±0.5 37.5±0.3 38.3±0.4 15.9±0.5 36.5±0.3 38.5±0.3
w-a 44.1±0.4 45.9±0.7 45.6±0.7 35.7±0.4 43.4±0.5 47.7±0.9 41.9±0.4 43.5±0.4 44.0±0.5 20.7±0.5 44.1±0.5 45.5±0.4
w-d 70.5±0.7 51.7±1.0 55.1±0.8 66.6±0.7 71.3±0.8 67.0±1.1 65.7±0.6 69.4±0.8 71.8±0.9 17.8±1.1 69.7±0.8 73.3±0.7
w-c 31.1±0.6 29.4±0.6 30.4±0.7 31.3±0.4 31.9±0.5 32.2±0.8 33.5±0.3 33.5±0.3 33.2±0.5 12.4±0.5 33.6±0.5 34.6±0.5
d-w 76.5±0.5 62.1±0.7 62.1±0.8 74.3±0.5 78.3±0.5 74.1±0.8 69.5±0.7 78.6±0.5 82.8±0.6 27.6±1.1 80.1±0.4 81.7±0.5
d-c 32.9±0.5 31.0±0.5 31.7±0.6 31.4±0.3 33.5±0.4 34.1±0.8 35.2±0.2 34.4±0.4 34.8±0.4 15.1±0.5 34.0±0.4 34.6±0.5
c-a 44.7±0.6 45.5±0.9 45.3±0.9 35.9±0.4 44.1±0.6 44.6±0.8 42.0±0.6 43.1±0.4 46.3±0.6 27.2±0.5 44.5±0.4 48.1±0.6
c-w 63.7±0.8 60.5±0.9 60.3±1.0 30.8±1.1 55.9±1.0 63.8±1.1 44.5±0.9 52.8±1.1 59.3±1.6 29.6±0.9 61.0±1.1 63.7±1.4
c-d 57.7±1.1 51.9±1.1 55.8±0.9 35.6±0.7 50.6±0.8 56.5±0.9 42.5±0.9 46.8±1.0 51.1±1.2 31.3±1.1 52.6±0.6 58.8±0.3
Mean 50.8 45.5 46.5 41.9 49.6 50.7 45.9 48.8 51.3 22.0 50.7 53.2

explicitly. As a result, they may fail to fully and effectively
transfer knowledge from the source domain to the target
domain. In contrast, MTLF3 explicitly reduces divergence
in distributions between domains by employing a regular-
ization term to learn weights for the source-domain labeled
data. Unlike the other baselines, SISS attempts to minimize
the distance between the re-weighted source distribution
and the target distribution, JDA tries to learn a new feature
representation to jointly match both the marginal distribu-
tions and conditional distributions. However, as SISS and
JDA both ignore the advantage of distance metric learning,
and the distributions matching may be conducted under an
inappropriate distance metric.7 Furthermore, compared to
CDML, MTLF3 achieves better performance. This is because
CDML suffers from the limitation caused by the pipelined
framework. In contrast, MTLF3 learns instance weights and
a Mahalanobis distance metric simultaneously, and thus
overcome the limitation caused by the pipelined framework.
By this way, the metric learned by MTLF3 is supposed
to be more appropriate and useful for the cross-domain
classification tasks.

5.5 Classification on USPS-MNIST Dataset
On the USPS-MNIST dataset, we compare our proposed
MTLF with MMDT, CDML, SVM, SVMs, SVMt in terms
of accuracy on large scale handwriting recognition. The
experimental results are reported in Table 3.

From the table, we observe that the performances of
CDML of SVM are even worse than that of SVMt, which
only uses target-domain labeled data for training. This

7. Note that the results of SISS and JDA shown in Table 2 are different
from those reported in the original papers [26] and [28]. This may be
because that the labeled instances of the source and the target domains
are randomly selected for training (20 random runs), which may result
in difference of experimental settings between ours and theirs.

TABLE 3
Comparison results on the USPS-MNIST dataset (Accuracy in %).

SVMs SVMt SVM MMDT CDML MTLF

usps-mnist 18.12 65.88 62.22 82.03 56.53 82.99
mnist-usps 13.08 81.9 68.17 85.86 57.21 90.1

is because if the distributions of the source domain and
the target domain are very different under the Euclidean
distance, then using the source-domain label in a brute-
force manner as SVMt does may get very poor performance.
Furthermore, in this case, the error in matching distributions
under the Euclidean distance may be large, which will be
further propagated to the metric learning step, resulting in
poor performance. We also observe that MTLF performs
better than the other transfer learning baseline MMDT. This
is because on the USPS-MNIST dataset, there is little back-
ground and texture information that can be exploited by
MMDT to construct a powerful representation for the source
domain data and the target domain data. In contrast, MTLF
performs distribution matching through instance reweight-
ing under a data-dependent metric instead of finding a new
feature representation. The learned Mahalanobis metric is
still able to capture and utilize intrinsic geometric structure
among the instances effectively, even with little background
and texture information.

More detailed comparison results in terms of accuracy on
different classes on the USPS-MNIST dataset are reported in
Table 4. From the table, we can find that none of the four
comparison methods achieves the best results on all the
classes. Moreover, the baseline methods perform very un-
stably on different classes. These observations suggest that
without distributions matching between domains under a
proper distance metric, the classification performance may
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TABLE 4
Experimental results of case study on the USPS-MNIST dataset in accuracy%.

Tasks Methods Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

usps-mnist

SVM 95.61 67.22 42.73 56.83 47.56 63.34 73.7 70.72 73.82 32.01
CDML 76.94 92.07 73.45 21.78 71.49 28.48 65.24 50.68 23.61 53.91
MMDT 92.45 95.24 84.5 77.43 77.09 66.48 81.84 86.48 75.05 80.08

MTLF 93.37 99.21 72.77 75.84 79.43 71.64 90.61 85.31 72.18 86.62

mnist-usps

SVM 88.06 99.56 74.18 38.86 44.91 9.27 65.07 79.22 65.57 79.15
CDML 88.43 95.82 43.42 37.93 21.25 28.55 49.59 69.74 40.49 48.47
MMDT 96.79 96.69 88.73 83.16 72.14 70.7 92.19 91.63 87.21 64.67

MTLF 98.21 99.39 85.95 88.06 76.21 79.67 95.07 92.33 83.44 89.77
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Fig. 4. Confusion matrix of MTLF on the mnist-usps task.

be sensitive on different classes or datasets. In contrast, as
shown in the confusion matrix of MTLF on the mnist-usps
task in Fig. 4, MTLF performs stably on differently classes,
which verifies the robustness of MTLF.

5.6 Parameter Tuning
In this section, we conduct sensitivity studies on the pa-
rameters of MTLF. In the general optimization objective
of MTLF for both classification and regression (14), there
are two trade-off parameters λ and β, and one penalty
coefficient. Furthermore, regarding the specific solution to
classification, we have two additional parameters, the num-
ber of nearest neighbors used in KNN, K, and the number
of instance pairs, C. Besides these parameters involved in
MTLF, for preprocessing on high-dimensional data, e.g.,
images of the Office-Caltech dataset and the USPS-MNIST
dataset, we use principal component analysis (PCA) [44].
Therefore, we also conduct experiments on the sensitivity of
the reduced dimensionality d. In the following experiments,
when we study the sensitivity on some parameter(s), we fiex
the values for the other parameters.

5.6.1 Sensitivity Study on K for KNN Classifiers
Fig. 5(a) reports the potential impacts imposed by different
numbers of nearest neighbors, K, to the accuracy of MTLF
on the Office-Caltech dataset. From the figure, we can ob-
serve that the accuracies of MTLF on the tasks d-w and w-d
are much higher than those of the other tasks with varying
values of K. We also find that the accuracies of MTLF on the
tasks d-w, w-d and w-a decrease with the increasing values
of K, while the accuracies of MTLF on the tasks a-c, w-c and
d-c change slightly under varying values of K. These results
show that a large value of K may reduce the accuracy of
cross-domain classification problems, while a small value
of K may perform more stably and better. These empirical

observations suggest us to set K to be a small integer, e.g.,
K = 1.

5.6.2 Sensitivity Study on Number of Instance Pairs C
As the C instance pairs are randomly chosen for optimiza-
tion in classification problems, in this experiment, we verify
the impact of different values of C to the overall accuracy
of MTLF. Experimental results with varying values of C
ranging from 50 to 1,500 are shown in Fig. 5(b). From the
figure we can observe that the accuracies of MTLF on the 6
tasks change slightly with increasing values of C. Based on
these empirical observations, we set the number of instance
pairs,C, to 100 for classification. We do not set a larger value
for C because a larger value of C causes higher cost in terms
of computational time. Note that the influence of different
values of C to the cost of MTLF in terms of computational
time will be further analyzed in Section 5.6.5.

5.6.3 Sensitivity Study on Penalty Coefficient ρ
In Section 4, we formulate the constrained problems (11) and
(13) as an unconstrained problem (14) by adding a penalty
term. Accordingly, ρ in (14) is the penalty coefficient of the
penalty term. Theoretically, it is not difficult to find that a
larger ρ may make us more assurance to obtain the optimal
solutions of A and ω̂ [45]. However, a larger ρ may make
the computation in practical applications more difficult [45].
To choose a suitable ρ, we conduct two experiments.

We conduct the sensitivity analysis on ρ on on the Office-
Caltech dataset, whose experimental results are shown in
Fig. 5(c). From the figure, we find that when ρ ≥ 1, the
performance of MTLF is smooth and stably good, and a
larger value of ρ when ρ > 1 does not lead to a significantly
higher accuracy. To analyze the impact of different values
of ρ on the convergence rate of our proposed algorithm,
we conduct another set of experiments on the d-w task by
varying the values of ρ from 1 to 10. Fig. 6 shows the exper-
imental results, where ∆J = Jt+1−Jt, ∆A = ‖At+1−At‖
and ∆ω̂ = ‖ω̂t+1 − ω̂t‖. The x-axis in Fig. 6(a), Fig. 6(b)
and Fig. 6(c) represents the number of iterations t. From
the figures, we observe that for each value of ρ, ∆J , ∆A
and ∆ω̂ all consistently decrease after several iterations. We
also find that at an iteration t, a larger value of ρ always
lead to a larger value of ∆J , ∆A or ∆ω̂, which implies that
more iterations are required for convergence. This suggests
that if we choose a very large value for ρ, we may suffer
from expensively computational time for convergence. By
considering the results shown in Fig. 6(c) that the accuracies
of MTLF with ρ ≥ 1 are very similar, we can set ρ to be a
relatively small value, e.g., ρ = 1 or ρ = 2.
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Fig. 5. Sensitivity analysis of the number of nearest neighbors K, number of instance pairs C, and penalty coefficient ρ of MTLF on the Office-
Caltech dataset.
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Fig. 6. Impact of different ρ’s on the convergence rate for MTLF.

5.6.4 Sensitivity Study on β and λ
Here, we study sensitivity analysis on the two trade-off
parameters, β and λ, in the objective of MTLF (14). Exper-
iments are conducted on the mnist-usps task of the USPS-
MNIST dataset, whose results are shown in Fig. 7 From
the figure, we observe that MTLF performs well and stably
when β is set to be a relatively small value, i.e., β ≤ 0.01,
and λ is in a wide range [10−3 103].
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Fig. 7. Sensitivity analysis on β and λ.

5.6.5 Sensitivity Study on Dimensionality d
Note that in our experiments on the Office-Caltech dataset
and the USPS-MNIST dataset, we use principal component
analysis (PCA) as a preprocessing method to transform the
data from a high-dimensional space to a low-dimensional
space. In this experiment, we test the influence of different

dimensions d to accuracy and computational time of MTLF,
respectively. As the dimension of the WiFi data is small, we
use all features of the original data for experiments on the
WiFi dataset.

Fig. 8(a) reports the experimental results of MTLF on
the Office-Caltech dataset with varying values of d. In this
experiment, we change d from 2 to 40. From the figure we
can observe that MTLF performs well and stably on all the
tasks when d ≥ 10. The experimental results of MTLF on
the USPS-MNIST dataset with varying values of d from
3 to 80 are reported in Fig. 8(b). From the figure, we can
observe that MTLF performs well and stably on all the tasks
when 20 ≤ d ≤ 30. Fig. 8(c) reports the computational time
on the a-c task of the Office-Caltech dataset with varying
numbers of dimension d and varying numbers of instance
pairs, C . The x-axis represents the dimension, and the y-
axis represents the computational time. Curves of different
colors represent the computational time corresponding to
different values of C, respectively. This experiment is tested
on a computer deployed with a dual-core CPU (2.0 GHz)
and 8.0GB RAM memory. From the figure, we can observe
that the computational time increases with the increasing
values of d, and a larger value of C leads to longer compu-
tational time. The experimental results shown in Fig. 8(a),
Fig. 8(b) and Fig. 8(c) suggest that we can set d ∈ [20 30] to
achieve good performance and computational efficiency.
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Fig. 8. Influence of different d’s for MTLF.

5.6.6 Discussion
Based on the above empirical experiments, we summarize
the suggested values or ranges for all the parameters of
the proposed MTLF in Table 5, which can be considered
as priors to use cross-validation to tune optimal parameter
settings on specific datasets.

TABLE 5
Suggested values or ranges for parameters.

K C ρ β λ d

1 100 1 or 2 0.01 1 [20 30]

6 CONCLUSION AND FUTURE WORK

In this paper, we present a metric transfer learning frame-
work (MTLF) to address classification and regression prob-
lems in a unified framework. By defining the objective
functions on the basis of a Mahalanobis distance, instead
of the Euclidean distance, MTLF makes it possible to more
efficiently preserve and utilize the intrinsic geometric infor-
mation among the instances from different domains with
similar/dissimilar labels. With these advantages, MTLF can
maximize the inter-class distances and minimize the intra-
class distances for the target domain. In this way, MTLF
improves the accuracy of the target domain task with the
reweighted instances in the source domain. In addition, we
discuss the limitation of learning a Mahalanobis distance
and instance weights in a pipelined framework. To over-
come this limitation, we propose an alternating optimization
method to learn them simultaneously. As a result, MTLF is
able to transfer knowledge from the source domain to the
target domain more effectively.

Experiments on real-world regression or classification
problems verify the superiority of MTLF over other state-
of-the-art methods. Though MTLF has shown promising
results for transfer learning problems, there are still some
open issues to be studied. For example, how to apply the
proposed MTLF to imbalanced data classification problem-
s [46] or multi-instance multi-label classification problem-
s [47]. In these problem settings, it is difficult to match the
distributions between domains, which makes it challenging
to learn an optimal Mahalanobis distance for the target

domain. In our future work, we would like to extend our
framework to solve these problems.
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